Explicit methods for stiff stochastic differential equations
نویسنده
چکیده
Multiscale differential equations arise in the modeling of many important problems in the science and engineering. Numerical solvers for such problems have been extensively studied in the deterministic case. Here, we discuss numerical methods for (mean-square stable) stiff stochastic differential equations. Standard explicit methods, as for example the EulerMaruyama method, face severe stepsize restriction when applied to stiff problems. Fully implicit methods are usually not appropriate for stochastic problems and semi-implicit methods (implicit in the deterministic part) involve the solution of possibly large linear systems at each time-step. In this paper, we present a recent generalization of explicit stabilized methods, known as Chebyshev methods, to stochastic problems. These methods have much better (mean-square) stability properties than standard explicit methods. We discuss the construction of this new class of methods and illustrate their performance on various problems involving stochastic ordinary and partial differential equations.
منابع مشابه
Explicit stabilized integration of stiff determinisitic or stochastic problems
Explicit stabilized methods for stiff ordinary differential equations have a long history. Proposed in the early 1960s and developed during 40 years for the integration of stiff ordinary differential equations, these methods have recently been extended to implicit-explicit or partitioned type methods for advection-diffusion-reaction problems, and to efficient explicit solvers for stiff mean-squ...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملSecond weak order explicit stabilized methods for stiff stochastic differential equations
We introduce a new family of explicit integrators for stiff Itô stochastic differential equations (SDEs) of weak order two. These numerical methods belong to the class of onestep stabilized methods with extended stability domains and do not suffer from stepsize reduction that standard explicit methods face. The family is based on the classical stabilized methods of order two for deterministic p...
متن کاملWeak Second Order Explicit Stabilized Methods for Stiff Stochastic Differential Equations
We introduce a new family of explicit integrators for stiff Itô stochastic differential equations (SDEs) of weak order two. These numerical methods belong to the class of one-step stabilized methods with extended stability domains and do not suffer from the stepsize reduction faced by standard explicit methods. The family is based on the standard second order orthogonal Runge-Kutta Chebyshev me...
متن کاملS-ROCK: Chebyshev Methods for Stiff Stochastic Differential Equations
We present and analyze a new class of numerical methods for the solution of stiff stochastic differential equations (SDEs). These methods, called S-ROCK (for stochastic orthogonal Runge–Kutta Chebyshev), are explicit and of strong order 1 and possess large stability domains in the mean-square sense. For mean-square stable stiff SDEs, they are much more efficient than the standard explicit metho...
متن کامل